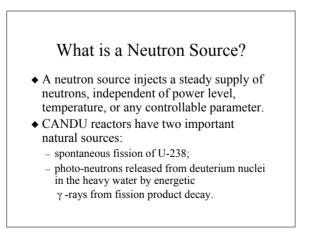
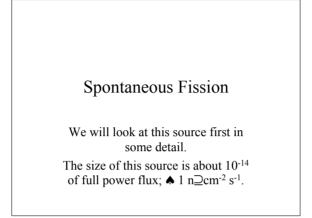
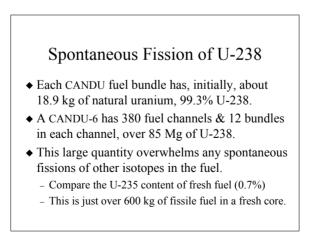
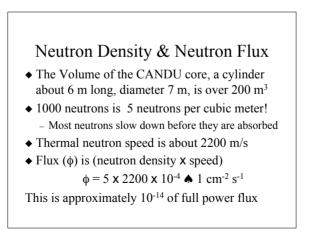

Dynamics of the Subcritical Core

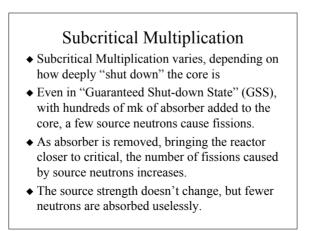

Neutron Sources Subcritical Multiplication of Sources Response Time to $+\Delta k$

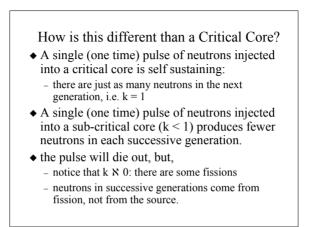



- There is measurable flux in a shut down reactor core, even if the reactor in the Guaranteed Shutdown State (GSS), with very large amounts of neutron absorbing stuff in the core.
- This is caused by subcritical multiplication of source neutrons.

- We refer to the reactor as:
 - in the operating state
 - in the shut down state
- But the Shut Down Reactor Core is not de-energized like other machines:
 - there is heat from fission product decay
 - there is flux from subcritical source multiplication




Spontaneous Fission Source Strength

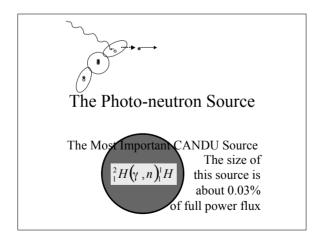

- ◆ S.F. decay of U-238 is a very rare process.
- The Half-Life is $T_{1/2} = 8 \times 10^{15}$ years
- This results in over 1/2 million decays per second in the whole core, but,
- The neutrons are quickly absorbed, in about a milli-second, so
- At any instant in the core there are just over 1000 neutrons from spontaneous fission.

Why is such a small flux important?

- At first start up of a CANDU this is the only flux present. It gets the thing started.
- After a very long shut down for maintenance this may be the largest source.
- A small source becomes significant because of **SUBCRITICAL MULTIPLICATION**.
- The core is configured to maximize neutron efficiency, so some of these source neutrons cause induced fissions.

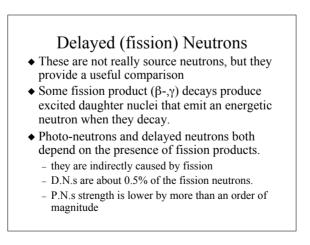
So why doesn't the flux die out with k < 1?

- Each "pulse" does die out, but the source continually injects new "pulses".
- There are successive generations of neutrons from fissions, induced by some of the source neutrons, so the measured flux is always larger than the source flux.
- The observed (measured) flux depends on how close the reactor is to critical:
 - deeply subcritical: each generation drops quickly
 - almost critical: many neutrons survive

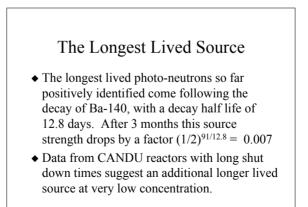

A Neutron Amplifier!

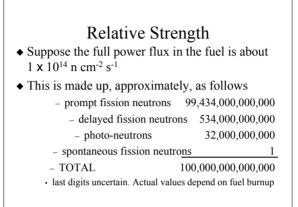
- The configuration of fuel, moderator, reflector and neutron absorber contributes to the number of induced fissions.
- The observed flux is always higher than the source flux, so we can think of the subcritical reactor as a neutron amplifier

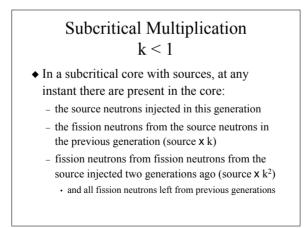
1

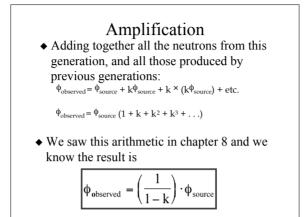

 $\frac{1}{1-k}$

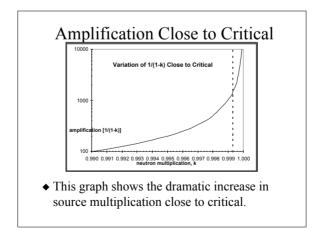
- The source flux is the input signal
- The observed flux is the output
- ◆ The gain, as we shall show, is

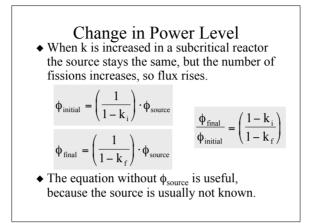

Photo-neutrons

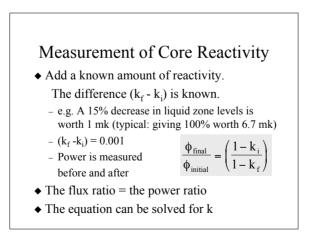

- Some energetic γ-ray from (β⁻,γ) decay of fission products (and, perhaps, activation products) interact with deuterium nuclei in the heavy water moderator and coolant, ejecting the neutrons.
- The H-2 binding energy is 2.2 MeV, so the γ-rays must have energy in excess of this.

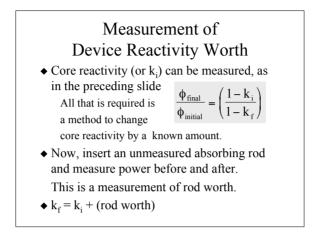


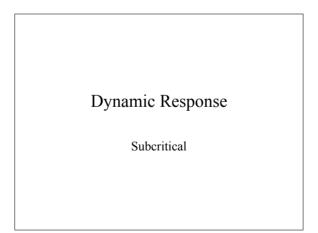

How do d.n. and p.n Differ?

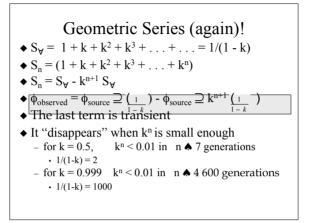

- The delayed neutrons show up within seconds or minutes of the fission that caused them. They affect the dynamics of power change, but not long term behaviour.
- Some photo-neutrons also show up within seconds, but many do not appear for days.
 - photoneutrons are produced in the shutdown core from fission products from previous high power operation, even months after shutdown

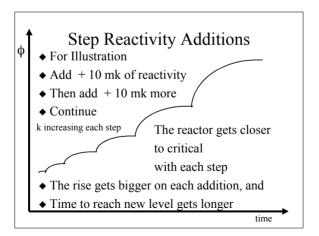


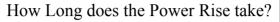












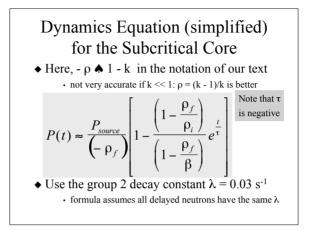
Critical & Subcritical

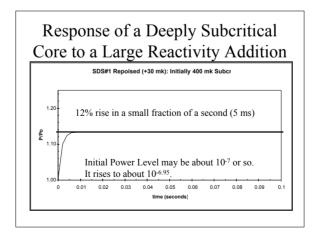
- ♦ Add a small ∆k step:
 - When subcritical, but very close to critical, there is a large power rise that flattens out after a long time
 - When slightly supercritical, the initial response is almost the same, but eventually the power begins to rise exponentially
 - · and can reach any level if not stopped
- Chapter 14 will look at the transition from subcritical to critical

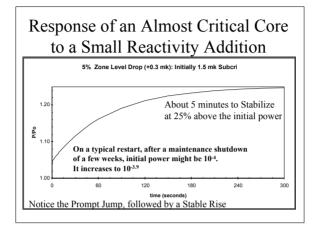
What is Critical?

- ◆ Theoretically, criticality is k = 1.000 000 =
 - this is "unmeasureable" to sufficient accuracy to be a practical definition
- Operationally, the reactor is "critical" whenever it is close enough to critical for the regulating system to maneuver power to a requested level at the requested rate
- called "<u>direct regulating system control</u>"
- Station operating rules may allow
 e.g. 5% 10% zone level subcritical operation
 - this is typically about $\Delta k = -0.3$ mk to -0.7 mk

- ♦ We can estimate n from kⁿ < 0.01 but to get n we need the time for one neutron generation.
- An average value is not good enough
- We must wait for the longer lived delayed neutrons to reach equilibrium
- A reasonable guess is to wait for the group 2 delayed neutrons to reach equilibrium
 see next slide (L ▲ 0.995 I + 0.005 x 30 s = 0.15 s)
- Pick an neutron lifetime around 0.1 s or 0.2 s


6 Groups of Delayed Neutrons Data for an Equilibrium Fuelled CANDU


GROUP	DELAYED NEUTRON FRACTION % OF TOTAL OF β = 0.54 %	HALF LIFE weightedav = 8.4 s mean lifetime 12.2 s
6	3.5%	0.2s
5	14.0%	0.5s
4	39.0%	2.2s
3	19.0%	5.7s
2	21.0%	22.0s
1	3.5%	54.2 s


C	ANDU Photo-neutro	on data		
U		Jii dutu		
GROUP	PHOTONEUTRON FRACTION	HALF LIFE		
	% OF TOTAL Off _{PN} ≈0.033 %n)			
15	64.6%	2.5s		
14	20.3%	41.0s		
13	7.0%	2.40m		
12	3.3%	7.70m		
11	2.1%	27.0m		
10	2.3%	1.65h		
9	0.3%	4.41h		
8	0.1%	53.04h		
7	0.05%	12.815		

The Two Group Equation for the Subcritical Core

- A constant source term can be added to the differential equations of Chapter 8
 - so a time dependent solution can be derived for subcritical power changes
- We will not do this.
- Instead we quote the formula, simplified to the "prompt jump" approximation
- And show some plotted graphs

